Full Research Papers

  1. Chelant-aided enhancement of lead mobilization in residential soils. Dibyendu Sarkar, Syam S. Andra, Sumathi K.M. Saminathan, Rupali Datta (2008)
    Environmental Pollution, Volume 156, Issue 3, Pages 1139-1148,
    https://doi.org/10.1016/j.envpol.2008.04.004.
    (https://www.sciencedirect.com/science/article/pii/S0269749108002042)
  2. Induction of lead-binding phytochelatins in vetiver grass [Vetiveria zizanioides (L.)]. Andra, S. S., Datta, R., Sarkar, D., Makris, K. C., Mullens, C. P., Sahi, S. V., et al. (2009) J. Environ. Qual. 38, 868–877. doi: 10.2134/jeq2008.0316
  3. Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry. Syam S. Andra, Rupali Datta, Dibyendu Sarkar, Sumathi K.M. Saminathan, Conor P. Mullens, Stephan B.H. Bach (2009) Environmental Pollution, Volume 157, Issue 7, Pages 2173-2183. https://doi.org/10.1016/j.envpol.2009.02.014.(https://www.sciencedirect.com/science/article/pii/S0269749109000736)
  4. Lead fractionation and bioaccessibility in contaminated soils with variable chemical properties. Sumathi K.M. Saminathan, Dibyendu Sarkar, Syam S. Andra & Rupali Datta (2010) Chemical Speciation & Bioavailability, Volume 22, 2010 – Issue 4 Pages 215-225. https://doi.org/10.3184/095422910X12892425424203
  5. Chelant‐assisted Phytostabilization of Paint‐contaminated Residential Sites. SS Andra, D Sarkar, SKM Saminathan, R Datta (2010) CLEAN–Soil, Air, Water 38 (9), 803-811. https://doi.org/10.1002/clen.200900218
  6. Symbiotic role of Glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. P Punamiya, R Datta, D Sarkar, S Barber, M Patel, P Das (2010) Journal of hazardous materials 177 (1-3), 465-474. https://doi.org/10.1016/j.jhazmat.2009.12.056
  7. Antioxidant enzymes response in vetiver grass: a greenhouse study for chelant‐assisted phytoremediation of lead‐contaminated residential soils. SS Andra, R Datta, R Reddy, SKM Saminathan, D Sarkar (2011) CLEAN–Soil, Air, Water 39 (5), 428-436. https://doi.org/10.1002/clen.201000323
  8. Predicting potentially plant-available lead in contaminated residential sitesSS Andra, D Sarkar, SKM Saminathan, R DattaEnvironmental monitoring and assessment 175 (1), 661-676. https://doi.org/10.1007/s10661-010-1559-4
  9. Identification of Biochemical Pathways Associated with Lead Tolerance and Detoxification in Chrysopogon zizanioides L. Nash (Vetiver) by Metabolic Profiling. VR Pidatala, K Li, D Sarkar, W Ramakrishna, R Datta (2016) Environmental Science & Technology 50 (5), 2530-2537. https://doi.org/10.1021/acs.est.5b04725
  10. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. R Attinti, KR Barrett, R Datta, D Sarkar (2017) Environmental pollution 225, 524-533. https://doi.org/10.1016/j.envpol.2017.01.088
  11. Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress. VR Pidatala, K Li, D Sarkar, R Wusirika, R Datta (2018) Chemosphere 193, 903-911. https://doi.org/10.1016/j.chemosphere.2017.11.087
  12. Impact of EDDS Dosage on Lead Phytoextraction in Contaminated Urban Residential Soils. Z Zhang, D Sarkar, V Sidhu, M Warke, R Datta (2022) Frontiers in Sustainable Cities, 3: 773467. doi: 10.3389/frsc.2021.773467
  13. Exchangeable lead from prediction models relates to vetiver lead uptake in different soil types. SS Andra, D Sarkar, SKM Saminathan, R Datta (2011) Environmental monitoring and assessment 183 (1), 571-579. https://doi.org/10.1007/s10661-011-1941-x